BAMPS 2017 Poster Session Presenter List

Note: We will have 2 poster sessions.

Poster Session I will be from 12-12:45 (before lunch): Last names A-K. (Put up in AM, taken down at start of lunch) Poster Session II will be from 1:30-2:15 (after lunch): Last names L-Z. (Put up at lunch, taken down at end of event)

	1	Pt N	A (C)11	
#	Last Name	First Name		Title
1	Ahyong	Vida	UC Berkeley	Metabolic dependency and genome reduction reveals an Achilles heel in an obligate intracellular pathogen.
2	Aviles	Milo	SFSU	Efficient Regulation of Gene Expression via Synthetic Bacterial Promoters
3	Balderas	David	UC Santa Cruz	Many Roles: How IscR contributes to virulence production in Yersinia pseudotuberculosis
4	Bastounis	Effie	Stanford	Biomechanical alterations of endothelial cells that affect infection by Listeria monocytogenes
5	Benoun	Joseph	UC Davis	Antibiotic treatment causes a reduction in antigen-specific T cell memory and increased susceptibility to secondary infection
6	Bess	Elizabeth	UCSF	Bioactivation of Polyphenolic Lignans by the Human Gut Microbiome
7	Blackburn-Marino		Stanford	A novel membrane-associated protein, MYR1, is crucial for effector transport by Toxoplasma gondii
8	Boucher	Michael	Stanford	Proteomic mapping of the Plasmodium falciparum apicoplast
9	Brimacombe	Cedric	UCSF	The core H2A histones of Candida albicans have non-overlapping functions
10	Bronner	Denise	UC Davis	Intestinal inflammatory leukocytes determine efficacy of colonization resistance against Salmonella
11	Brubaker	Sky	Stanford	Utilizing Genetic and Chemical Screening to Characterize Caspase-11 Dependent Cell Death
12	Byndloss	Mariana	UC Davis	Microbiota-induced epithelial PPAR-Î ³ -signaling thwarts dysbiotic pathogen expansion
13	Chavez-Arroyo	Alfredo	UC Berkeley	Innate immune pathways triggered by Listeria monocytogenes and their influence on therapeutic Listeria based vaccines.
14	Chen	Chen	UC Berkeley	The PEST-like sequence in Listeriolysin O prevents membrane damage by interacting with Ap2a2 and promoting internalization
15	Chen	Poyin	UC Davis	Molecular effects of prebiotic oligosaccharides on L. monocytogenes infection.
16	Cheng	Mandy	UC Berkeley	Actin-based motility promotes autophagy avoidance of Listeria monocytogenes in the macrophage cytosol
17	Chowdhary	Harshika	UC Berkeley	Analyzing Listeria monocytogenes-Induced Cell Death
18	Cohen-Ross	Auritte	•	: Into the Ears of Babes – Meaningful Science Outreach The production of Babes and Tap Broad into a great light and a production of the Book and the Book at t
19	Collins	Kieran	UC Santa Cruz	The cytoplasmic chemoreceptor TIpD mediates a repellent response to ROS that is relevant during early infection.
20	Conner	Jenna	UCSC	Characterization of CdgG, a Vibrio cholerae Biofilm Repressor
21	Diep	Anh	UC Merced	Extracting Antigen from the Vacuole of Toxoplasma gondii
22	DiPeso	Lucian	UC Berkeley	Uncoupling pyroptosis from cell lysis reveals discrete stages of inflammasome-mediated cell death
23	Elwell	Cherilyn	UCSF	Molecular Basis of the Chlamydia trachomatis effector IncE interaction with Sorting Nexin 5 to Escape Pathogen Restriction
24	For all als	Davids.	LICCE	The Transcription Factor CHOP, an Effector of the Integrated Stress Response, is Required for Host Sensitivity to the Fungal Intracellular
24	English	Bevin	UCSF	Pathogen Histoplasma capsulatum
25	Foutouhi	Azarene	UC Davis	Placental Microbiome of Healthy Pregnancies Exhibits Complex Microbial Interactions
26	Franklin	Darleen	SFSU	Bacterial Passengers Riding on San Francisco Bay Area Public Transportation Systems
27	Guimaraes	Alessander	Genentech, Inc	Biomarkers of host response to S. aureus systemic infection The rele of Following Malaca T calls in driving Committed Contact calls are driving Regarding by the boundaries infection.
28	Hammond	Elizabeth	UC Davis	The role of Follicular Helper T cells in driving Germinal Center collapse during Borrelia burgdorferi infection
29	Hayashi	Jennifer	n/a UCSF	A growth associated membrane domain in mycobacteria.
30 31	Hayes Huda	Beth Md Nazmul	UCSF UC Davis	Defense against the Lyme disease spirochete in the tick vector.
32	Jacobson		UCSF	Infant stool microbiota at the time of vaccination is associated with vaccine responses measured at 2 y of age
32	Jacobson	Amy	UCSF	The effects of gut microbe lipopolysaccharide structure on innate immune signaling
33	Jeon	Ju Eun	Stanford	Intersecting Metabolomics and Transcriptomics for Plant Pathway Discovery: Acetylenic Metabolites in Plant-Pathogen Interactions
34	Johnson	Kevin	UC Santa Cruz	Determining the sensing profile of Helicobacter pylori chemoreceptors that modulate host inflammation
35	Justice	Brandon	UC Merced	Large Scale Deletion of Host Resistance Factors to T. Gondii
36	Kable	Mary	UC Davis	Potential microbial community drivers of systemic immune activation in healthy adults
37	Kumar	Priya	CSUN	Gyrase-mediated supercoiling of the Caulobacter crescentus sciP promoter drives its expression
38	Scharschmidt	Tiffany	UCSF	Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin
33	Schargeninat	illially	0001	Overexpression of a bacterial efflux pump causing multidrug resistance, reduced motility, and ectopic pole formation in <i>Caulobacter</i>
39	Arvizu	Ignacio	CSU	crescentus
1		Hanh	UCSC	Synthetic cyclic peptomers as type III secretion system inhibitors
-	Luiii	Halli	0000	Synthetic Cyclic peptonicis as type in secretion system ministrois

2	Lee	Eric	UC Berkeley	Regulation of Listeria monocytogenes Isoprenoid Precursor Synthesis
3	Leon	Lina	UCSF	"Unwinding†CRISPR-Cas3: Recruitment and activation of a bacterial helicase-nuclease.
4	Li	Jianfang	UC Berkeley	Mucosal fluid glycoprotein FRIT suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa
5	Lien	Kathy	UC Berkeley	HIV-1-induced epithelial-mesenchymal transition in oral mucosal epithelial cells
6	Light	Sam	UC Berkeley	Identification of a Listeria monocytogenes Transmembrane Electron Relay System
7	Louie	Alexander	UC Berkeley	Listeria monocytogenes-Induced Colitis Model Reveals a Role for STING
8	McMahon	Eleanor	UCSF	Structure and function of the chlamydial inclusion membrane protein IncB
9	Moquin	Stephanie	UCSF	The Epstein-Barr virus episome maneuvers between nuclear chromatin compartments during reactivation
10	Morgan	Jessica	UC Santa Cruz	Piericidin A1 Blocks Yersinia Ysc Type III Secretion System Needle Assembly
11	Moss	Steven	UCSF	Understanding Eukaryotic-like Kinases in Legionella pneumophila
12	Nguyen	Brittney	UC Berkeley	An In Vivo Inducible Cre/Lox System to Analyze the Role of Listeriolysin O in Listeria Pathogenesis
13	Nguyen	Henry	UC Davis	Salmonella Enteritidis Colonization: Observing Inflammation in Newborn Chicks
14	Nilsson	Inga	NIBR (Novartis In	st Metabolic labeling of Gram-negative bacteria
15	Olsan	Erin	UC Davis	Restoring Colonization Resistance Against CRE After Single-Dose Antibiotic Treatment
16	Pham	Oanh	UC Davis	CD4 T cell non-cognate stimulation by death receptor 3 and IL-18R contribute to the resolution of intracellular bacterial infections
17	Rackaityte	Elze	UCSF	Determining the influence of meconium microbiota on intestinal immune development
18	Radhakrishnan	Prathima	Stanford	Studying E-Cadherin's Role in Facilitating L. monocytogenes Cell-Cell Spread Between Adjacent Epithelial Cells
19	Radhakrishnan	Prathima	Stanford	Determining E-Cadherin's Role in L. Monocytogenes Cell-Cell Spread.
20	Rauch	Ben	UCSF	phage proteins inhibit CRISPR-Cas9 immunity in Listeria monocytogenes
21	Robinson	Elektra	UC Santa Cruz	Investigating the Regulatory Role of LncRNA-Aim2 in Mouse Macrophages
22	Rocha	Alexa	CSU	Three transcription factors regulate the accumulation of a dynamically-localizing polyester in Caulobacter crescentus
23	Romero	Diana	UC Santa Cruz	The role of iron and oxygen in Yersinia pseudotuberculosis pathogenesis
24	Rutaganira	Florentine	UCSF	Kinase Chemical Biology of Toxoplasma gondii and Cryptosporidium parvum CDPK1
25	Sana	Thibault	Stanford	Type Six Secretion System: The "Fight Club†in the mammalian gut
26	Sandstrom	Andrew	UC Berkeley	Dissecting the Molecular Mechanisms of NLRP1B Activation
27	х	Х	X	x
28	Sherry	Jessica	UCSF	The Chlamydia trachomatis inclusion membrane protein CT192 interacts with Dynactin to promote intracellular survival
29	Skoog	Emma	UC Davis	CagY-dependent regulation of type IV secretion in Helicobacter pylori
30	Torres	Teresa	UC Davis	Western Diet induced gut oxygenation drives dysbiosis
31	Tracy	Karen	UC Davis	Immune gene expression in chickens infected with Newcastle Disease Virus
32	Tsai	April	UC Davis	Induction of the unfolded protein response by Brucella abortus VceC
33	Walczak	Marta	Stanford	Novel function of a conserved autophagy protein Atg8 in malaria parasites
34	Walker	Greg	UC Davis	Malaria reduces colonization resistance to non-Typhoidal Salmonella through alterations to the intestinal microbiota
35	Williams	Kelly	Sandia	The Bacterial and Archaeal Pan-Mobilome
36	Wu	Daniel	UC Santa Cruz	Designing genetic tools to study c-di-GMP signaling in Vibrio cholera
37	Yu	Huibin	UC Davis	Differential PKR Inhibition by Poxvirus Proteins Modifies NF-κB and ATF4 Signaling
38	Zhang	Lillian	UC Davis	Modification of LPS by EptB Inhibits Intelectin Binding and Increases Systemic Inflammation During Salmonella Infection
- 55		4 11		